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I t  is shown that  in those cases where Laval's scheme of 45 elastic constants is applicable, there are 
six relations that must be satisfied by the elastic constants. These relations follow from an analysis 
of the body-couples and of the strain-energy function. As a consequence the number of independent 
elastic constants of a triclinic crystal is reduced from 45 to 39; reductions also take place in the 
other crystal classes. The new elastic matrices are given for each of the eleven Laue-groups and for 
isotropic solids. There is also a discussion on the various assumptions that  have been made by 
different authors regarding the rotational invariance of the strain energy. 

1. I n t r o d u c t i o n  

Unt i l  1951 it  was accepted tha t  the elastic properties 
of the most general (least symmetr ical)  crystal could 
be described by means  of 21 elastic constants. The most 
comprehensive of the early contributions in this f i e ld  
is to be found in Voigt 's Lehrbuch der Kristallphysik 
(1910, 1928). Born et al. (1954) adapted their  
crystal  dynamics  to the scheme of the 21 elastic 
constants  of Voigt. But  in recent years there have 
been several theoretical  publications,  ma in ly  by  Laval  
(1952, 1957), LeCorre (1953, 1954, 1955, 1958), 
Viswanathan  (1954, 1955), l~aman (1955), and Joel  & 
Wooster (1957), suggesting a more general approach 
which involves a greater number  of elastic c o n s t a n t s -  
45 instead of 21 in the most general case, with cor- 
responding increases in each of the crystal  classes 
(LeCorre, 1953). There are also some accounts of 
exper imenta l  work confirming the need for an increase 
in the number  of elastic constants for quartz (Zubov 
& Firsova, 1956) and  ammonium dihydrogen phos- 
phate  (LeCorre, 1954a; Joel  & Wooster, 1960). 

In  this paper  the subject  is discussed from the 
macroscopic point  of view. An analysis  of the body 
couples and  of the strain-energy function shows tha t  
in those cases where the new theory might  be appli- 
cable, some relations have to be satisfied by  the elastic 
constants. These relations reduce the number  of 
independent  constants from 45 to 39. A brief account 
has been publ ished a l ready (Joel & Wooster, 1958). 

2. S t r a i n s ,  s t r e s s e s ,  r o t a t i o n s  a n d  b o d y - c o u p l e s  

The strain tensor e~ is defined by  

e~ = (~u~/~x~) ( c~, fl = 1, 2, 3) ,  ( 1 ) 

where u(ul ,  u2, u3) is the displacement  at the point  
x (xl, x2, x3). 

* Present address: Centro de Investigaciones de Cristalo- 
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I t  will be convenient,  for the developments  t ha t  
will follow, to introduce the notat ion:  

,~11 -~- Sl,  I (~32 "~ 823)~--~ Q91 , ½(S32 - -  S23) = 01 , 

e 2 2 = S %  ½ ( S 1 3 + e 3 ~ ) = ~ 2 ,  ~ ( S ~ a - - e 3 ~ ) = 0 2 ,  

S33 = e3, ½ (S21 ~ - C 1 2 ) =  093, "21" (~21 - -  C12) -~- 03 • (2) 

The symmetr ic  and an t i symmetr ic  parts  of the  
s train tensor (pure deformation and  pure rotat ion 
respectively) now take the forms: 

el ~a (p2 
qa e2 ~i 
q2 (plea 

and  
0 - Oa 02 
Oa 0 - 01 

- 02 01 0 
(3) 

e~ is the longi tudinal  strain, or extension per uni t  
length, along the axis X~; 2 ~  and 0~ are respectively 
the total  shear deformation and  the rotat ion around 
an axis parallel  to X~. 

Unt i l  the work of Laval  (1952) it  was assumed tha t  
the rotations 0~ could be neglected. Such rotations in 
the crystal  were considered i rrelevant  in relation to 
the elastic energy. Assumptions used in static elast ici ty 
were being applied to dynamic  elast ici ty without  
fur ther  qualification. But  when the strains are func- 
tions of x and t, then  the rotations 0~, the angular  

velocities 0~ and the angular  accelerations 0"~ in every 
element  of volume are also functions of x and t, and  
so are the stresses. For elastic waves they  are all  
periodic functions of x and t with the same time- 
frequency v. For such strains the rotations cannot be 
neglected, and therefore in the analysis  tha t  follows 
all nine components of the strain tensor are taken into 
consideration. 

The stress tensor will be designated by  a~B(a, fl = 
1, 2, 3). a ~  is the component  of stress in the direction 
of the axis X~ acting on a surface perpendicular  to X~. 

In  every element  of volume, the shear stresses 
(a # fl) exert couples. Their  moment  per uni t  volume 
will be designated by  M(M1, M2, M3), so tha t :  
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M1 = G 3 2 -  G23 

M2 = a18- aal 
M8 = a21-  a12. (4) 

Contrary to the usual t reatments  of the problem 
we shall now assume that  body-couples may  exist. 
The moment per unit  volume exerted by these body- 
couples will be designated by G(G1, G2, G~), so tha t  
Gadv is the moment acting on the element of volume 
dv around an axis parallel to X~. If body-couples are 
neglected, the rotational equilibrium conditions re- 
quire tha t  the moments M~ should vanish. In this 
case equations (4) give: 

a~fi- a ~ =  0; (5) 

tha t  is, the stress tensor is symmetrical. 
:But when the body-couples are not neglected, then 

equation (5) takes a different form. Rotational 
equilibrium requires: 

M + G = 0  (6) 

from which it follows tha t  

a s ~  - a 2 8  + G 1  = 0 

ff13 - a31 -~ G2 -- 0 

a21- a12+ Ca=0 . (7) 

and the stress tensor is not necessarily symmetrical. 
With this notation Hooke's law takes the form: 

aa~= .~ Ca~,oer~ (a, fl, ~, 6 = 1, 2, 3) . (8) 

Using Laval 's  abridged notation this reduces to 

a~ = ~7 c~e~ (i, j = 1, 2, . . . ,  9) (9) 

and the condition 

must apply.* The relation between the four-index and 
the two-index notation proposed by Laval is given 
in the following table. 

aft, ~6 11 22 33 23 31 12 32 13 21 

i, j 1 2 3 4 5 6 7 8 9 .  (10) 

By combining equations (7) with Hooke's law (equa- 
tions (8) and (9)) it is possible to express G, the 
moment per unit  volume exerted by the body- 
couples, in terms of the components of strain. Using 
the abridged notation it follows from equations (7) 
tha t  

G~= a~+3- a~+ s ( f l = l ,  2, 3) .  (11) 

Introducing Hooke's law into this equation gives: 

9 

G~=.~ (c~+8,i-c~+6,i)s~. (12) 
¢ = 1  

* Makinson (1955) has suggested that under certain circum- 
stances it might be possible that c4j#cj~. 

In  order to show explicitly the deformations and the 
roSations, the relations (2) will be used. I t  follows from 
formulae (2): 

~6 = s 1 2  = 998 - -  0 3  

s s  = s l a  = ~ 2  + 02 
(13) 

If the substitutions (13) are introduced into equa- 
tion (12), then the moments G~ become a function of 
the nine variables: sl, s2, sa, ~1, ~2, ~8, 01, 02 and 0a. 
The terms can be grouped together in three parts:  
one tha t  contains only the longitudinal strains s~; 
one with the shear deformations ~ ;  and one in terms 
of the rotations 0~. The expression for G~ becomes 
(all summations over a, from 1 to 3): 

eft = ~v' (ca, fl+3 - ca, fl+6) ea 

-~- ~vv (ca~-3, fl-{-3 - ca-~3, fl-{-6 "4- ca-~6, fl-~3 - ca-t-6, fl-{-6) (Pot 
+ •( - ca+3,~+3 + %+a, ~+6 + %+6,fi+3- %+6,~+6) 0a. (14) 

The form of equation (14) suggests an analysis of 
the conditions under which the body-couples may  
exist; this will be given in the following section. 
But  first it may  be of interest to give an example of 
a qualitative model illustrating the concept of body- 
couples. Let us suppose tha t  the crystal is composed 
of electric dipoles all in parallel orientation. If an 
external electric field is applied in a direction inclined 
to the electric axis of each dipole then a mechanical 
couple will be exerted on the crystal. The magnitude 
of this couple is proportional to the volume of the 
crystal, provided tha t  the electric moments of the 
small dipoles are not affected by the applied field. 
Such a couple is properly described as a body-couple. 
The body-couples considered here are not, however, 
generated by an external field. We may assume tha t  
in certain crystals of sufficiently low symmetry  the 
application of particular stresses gives rise to dis- 
placements of charge which produce an internal 
electric field. If the direction of this field does not 
coincide with the direction of the axis of the electric 
dipole in each unit cell, then a body-couple must be 
produced in the same way as described above. If the 
material has an isotropic distribution of polarizable 
atoms or if the symmetry  is sufficiently high, then the 
directions of the internal field and of each dipole will 
coincide. However, if the atomic distribution is less 
symmetric there is no reason why there should not be 
a small angle between the internal field and the axis 
of the induced dipole. Similarly, if the effect of 
applying stresses were to induce magnetic dipoles, the 
internal magnetic field due to them might not coincide 
with the axis of the dipoles and again body couples 
would be produced. 



N .  J O E L  AND W. A. W O O S T E R  573 

3. T h e  s ix  n e w  re la t ions  b e t w e e n  the  e las t ic  
c o n s t a n t s  

Whatever  the mechanism responsible for the ap- 
pearance of the body-couples, it seems reasonable to 
expect that ,  if they can exist at all, these strain- 
induced couples can only arise in elements of volume 
tha t  are subject to deformation. I t  is in fact very 
difficult to conceive any strain-induced moment 
arising in an undeformed (purely rotated) element 
of volume, in which no structural change has occurred. 
This hypothesis can be formulated as follows: 

Given a crystal subject to mechanical strains only, 
a necessary condition for the appearance of body- 
couples in any element of volume is tha t  a deformation 
should be present in this element of volume. (It is not 
stated tha t  this condition is sufficient !) 

This hypothesis will now be applied to equation (14). 
If in an element of volume there is no deformation 
present, tha t  is, e~= q~=0  the expression for G~ is 
reduced to : 

3 
G ~ = 2  ( -  c~+3,~+3+ c~+3,~+6+ c~+6,~+3- ca+e,~+6) 0~. 

(15) 

But, according to the hypothesis stated above, G~ 
should in this case be equal to zero. This requires that  : 

components for each of those 12 matrices according to 
the theory of Voigt (V), to tha t  of Laval, LeCorre, 
Viswanathan & Raman (LL), and the one suggested 
in the present paper (JW). 

I t  will be noticed tha t  there is no difference between 
the new elastic constants and those of Voigt for 
crystals of the Laue-group m 3 m  and for isotropic 
solids: both the present formulation and tha t  of 
Voigt require c44=c47 and G~=0; the formulation 
of Laval, on the other hand, permits c , ~ c 4 ~  and 
G~,=2(CaT-C44)O~,. But it seems hardly possible tha t  
there could be strain-induced couples acting in an 
isotropie solid. 

As to the significance of the six new relations 
between the elastic constants, it is interesting to 
compare them with their analogues in the Voigt theory. 

If the elastic constants are written in the four-index 
notation, with their full subscripts afl~,5, equation (16) 
becomes: 

c ~  + c ~  = c ~ r  + c ~ .  (18) 

The analogue of (18) in the Voigt theory is: 

c~,~r ~ = c ~ : ,  = c~,~, = c~,r~ . (19) 

Relations (19) hold if the coefficients of s~ and q~ in 
equation (14) are also put  equal to zero, tha t  is, in 
the absence of body-couples. 

c~+3, f~+3 -{- Ca+6, t~+6 ---- Ca+3. t~+6 + Ca+6, t~+3 

(~, fl----1, 2, 3) .  (16) 

Equation (16) contains six independent relations. 

They are: 2c47 = C44 + C77 

2c5s = c55 + css 
2C69 : C66 -~- C99 

C45 -'}- C78 = C48 -~- C57 
C56 "~- C89 = C59 -~- C68 
c46 + c79 = c49 + c67 • (17) 

The six relations (17) reduce by six the number of 
independent elastic constants of a triclinic crystal 
(Laue-group 1), leaving it at 39. In the other Laue- 
groups there is also a reduction as compared with the 
tables given by LeCorre (1953). The new elastic 
matrices for the 11 Laue-groups and for isotropic 
solids are given in Appendix 1. 

The following table gives the number of independent 

L a u e - g r o u p  V LL J W  

i 21 45 39 
2/m 13 25 21 
m m m  9 15 12 
4/m 7 13 1 l 
4 / m m m  6 9 7 
3 7 15 13 
3m 6 10 8 
6/m 5 11 9 
6 / m m m  5 8 6 
m3  3 5 4 
m 3 m  3 4 3 
I s o t r o p i c  2 3 2 

4. Re la t ions  b e t w e e n  b o d y - c o u p l e s  and 
d e f o r m a t i o n s  

If the condition (16) is introduced into equation (14), 
the lat ter  becomes: 

G f l :  ~ (co: ' fl+3 -- co:, fl+6) ~ ~- 2 ~  (ca+3, fl-t-3 - -  cc¢+3, fiT6) (Pa ,  

~ ( 2 0 )  

which gives the moments per unit volume exerted by 
the body-couples in terms of the deformations. 

If equation (20) is written: 

G~=b~lsl+b~2s2+b~3s3+b~4~vl+b~scp2-4-b/~6q)~ (21) 

then the 18 coefficients b m (fl= 1, 2, 3; i =  1, 2, . . . ,  6) 
form a matrix tha t  represents, in abridged notation, 
a fourth-order tensor b~;,  that  is antisymmetric in 

and 7 (because the axial vector G is a second-order 
antisymmetric tensor) and symmetric in A and # 
(because the pure deformations constitute a second- 
order symmetric tensor), fi stands for the pair a~,, 
while i stands for the pair 2~#. 

With the help of equations (20) and (21) and the 
elastic matrices given in Appendix 1, it is possible to 
write the components of the matrices bzi in terms of 
the elastic constants co" for each of the Laue-groups. 
These matrices are given in Appendix 2. 

I t  is interesting to notice tha t  for each Laue-group 
the number of independent components of the matrices 
b~i is equal to the difference between the number of 
independent elastic constants c~ in the theory of Voigt 
and the number proposed in this paper. Besides, 
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these matrices show for each Laue-group the nature  
of the difference between the two schemes. 

5. T h e  s t r a in -ene r~ ,y  f u n c t i o n  

An assumption regarding the body-couples was 
made in section 3. This assumption states tha t  body- 
couples can arise only at points of the crystal at  which 
there is a deformation. As a consequence of this 
assumption,  the six relations (17) were obtained, 
which reduced the number  of independent  elastic 
constants  from 45 to 39. I f  these relations (17) are 
introduced into the strain-energy function 

W = ½ .~,ci~siej (i, j = 1, 2, . . . ,  9) , (22) 
ij 

some fur ther  interesting results are obtained. 
First ,  the substi tut ions (13) are introduced into 

equation (22), so tha t  the strain energy becomes a 
funct ion of the nine parameters  e~, ~ and 0~ (a = 
1, 2, 3). The function W can now be wri t ten as a sum 
of three terms:  

W =  W~+ War+ Wr (23) 

in such a way tha t  W~ contains deformations only 
(terms in e~e~, e~q~ and ~ ) ;  Wa~ contains both 
deformations and rotations (terms in e~0~ and ~0~);  
and W~ contains rotations only (terms in 0~0~). The 
subscripts d and r refer respectively to deformations 
and rotations, while the subscript dr indicates tha t  
there are both deformations and rotations. 

The expressions of the three terms in equation (23) 
are (all summat ions  over a and fl, from 1 to 3): 

W~ = ½Zc~,~s~s~ + Z (ca, ~+3 + c~, ~+6) s~9~ 

+ ½2: (c~+s, ~+3 + c~+6, ~+6 + 2c~+3, ~+6) q~q~ 

~ V a r  = Z ( c a ,  fl+ 6 --  Ca, fl+3)eaO fl 

+ ~'(c~,+6, t~+6 + c~,+3, ~+ 6 - c~+ 6, t~+3 - c~,+3, ~ ~-3) ~o, Ot~ 

Wr = ~27 (c~+3, ~+3 + c~+6, ~+6 - c~+3, ~+6 - c~+ 6, ~ + s ) 0 ~ 0 ~ .  

(24) 

I t  can be seen that ,  if use is made of equation (16), 
it  follows tha t  Wr =0 ,  because of the vanishing of the 
coefficients of 0~0~. Therefore, from the assumption 
made in section 3 regarding the body-couples, it follows 
as a necessary consequence tha t  equation (23) should 
be reduced to: 

W =  Wa + Wa~ . (25) 

In  physical  terms, this means tha t  the rotat ional  
par t  of the strain can also contribute to the strain 
energy if there is a deformation present ( W a r .  O); 
but  the rotations do not contribute to the strain- 
energy if they  are not accompanied by a deformation 
(W~=0). This result  can be summed up in the fol- 
lowing way. 

The assumption has been made tha t :  

(i) Strain-induced body-couples cannot arise at 
doints of zero deformation. 

From this assumption it follows, as has been shown 
above, tha t  : 

(ii) The strain energy is invar ian t  under  rotat ions 
at points of zero deformation. 

I t  is interesting to notice tha t  the a rgument  tha t  
leads from (i) to (ii) can also be followed the other 
way round: if (ii) is used as a s tar t ing assumption,  
then  (i) and the six relations (17) follow as a necessary 
consequence. 

I t  is sometimes convenient to express these ideas 
in terms of 'elements of volume' .  These elements of 
volume are small  compared with the wavelength of 
the elastic waves, so tha t  the strains and the stresses 
can be considered as constant  throughout  each element  
of volume. They are, on the other hand,  large com- 
pared with the size of the uni t  cell, which makes it  
possible to apply  to crystal lattices notions tha t  belong 
to the continuum. In  other words, 'e lement of volume'  
is to be understood as a portion of a lattice throughout  
which the lattice strain is constant. The two state- 
ments,  (i) and (ii), can then also be formulated as 
follows: 

(i) Strain-induced body-couples cannot arise in un- 
deformed elements of volume. 

(ii) Rotat ions of undeformed elements of volume 
leave the strain energy invariant .  

The inclusion in the expression for the strain energy 
of terms tha t  depend on rotations (equations (23) and 
(24)) requires some further  comment.  Whatever  model 
is chosen to explain the strain-induced body-couples, 
these rotations can contribute to the strain energy 
only if they are rotations of par t  of the mat te r  relat ive 
to the surrounding mat te r  in the same crystal. Such 
a relat ive rotat ion is absent  in rigid rotations so that ,  
as should be expected, rigid rotations do not contr ibute 
to the rotat ional  par t  of the strain energy. 

The separation of W into its three terms Wa, War 
and Wr (equations (23) and (24)) enables one to inter- 
pret the different assumptions made in the various 
theories of crystal elasticity. 

(i) In  the Voigt theory, and also in the lattice theory 
of Born & Huang  (1954), the strain energy is invar ian t  
under rotations of any  element of volume, whether  
it is deformed or not;  the rotations do not come into 
the strain-energy function. This amounts  to keeping 
the first term, Wa, only: 

W =  Wa . (26) 

But  this also carries with it an a priori denial of the 
possible existence of s train-induced body-couples. 

(ii) In  the theory of Laval  and LeCorre, on the other 
hand,  no invariance under  rotations is specified at all 
for the strain energy; all rotations are considered, 
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whether there is a deformation or not. In this way, 
all three terms of W are kept: 

W :  W d-~- Wclr-]- W r • (23) 

(iii) In  the  present  work, the strain energy is t aken  
as invar ian t  under  rotat ions,  but  this invariance is 
s ta ted  a priori only for undeformed elements of 
volume. The rotat ions have  to be considered, but  they  
can only contr ibute  to the s t ra in  energy if in t ha t  
par t icular  element of volume there is a deformat ion 
present  at  the same time. This means keeping the two 
terms W~ and Wd~ while Wr vanishes:  

W :  W d  "{- Weir • (25)  

Finally,  m a y  it be added t h a t  a clear distinction 
should be made  between the following two cases: 

(a) The rotat ions e are not a function of x, t ha t  is, 
they  are constant  th roughout  the par t  of the crystal  
under  s tudy;  in this case the rotat ions are rigid rota- 
tions, and a t  no point  is there a rota t ion relative to 
the  surrounding mat ter .  Consequently,  Wdr=O. 

(b) The rotat ions 0 are a function of x and t (time); 
they  consti tute the rotat ions t h a t  accompany  the 
deformations in every element of volume in cases such 
as the propagat ion of stress waves in crystals. These 
rotat ions contr ibute to the s train energy through the 
t e rm W~r. :But, if a rigid rotat ion is superimposed on 
these rotat ions no fur ther  contribution is made towards  
the  s train energy. 

Another  way  of looking a t  the distinction made 
between the two cases (a) and (b) is this:  in dynamic  
elasticity, once an a rb i t r a ry  system of reference has 
been fixed relat ive to the uns t ra ined crystal ,  any  
other  system obtained by means of a rigid rota t ion of 
the  former can also be used. But  rotat ions of the 
reference system tha t  are a function of x and t must  
be excluded. This point  is ment ioned here because in 
dynamic  elasticity the rota t ion 0 due to the s train 
is not  only a function of x but  a t  every point  it is 
also a function of t ; and the neglecting of the term War 
( through the neglecting of the rota t ion e) amounts  
to the unacceptable  assumpt ion tha t  a t  every point  
the axes of reference m a y  librate. 

6. On  the possibility of obtaining 
experimental evidence 

In  order to decide which of the  three schemes of 
elastic constants applies to a given crystal some 
appropriate elastic constants have to be determined 
experimentally. Dynamic methods, such as Bergmann- 
Schaefer elastograms or pulse-velocity measurements, 
are the most adequate; they can decide, for most 
crystals, whether the scheme of Voigt does apply or 
not. The propagation of elastic waves in crystals, 
which is the foundation of all dynamic methods, 
has been comprehensively reviewed by Musgrave 

(1959). The test  is whether  certain elastic constants  
- - w h i c h  are equal in the Voigt theory  bu t  not  neces- 
sar i ly  so in the Lava l  theory  or in the present  formula- 
t i o n - a r e  in fact  equal or not. 

Zubov & Firsova (1956) found for quar tz  a difference 
of just  over 1% between c44 and c55 and of 3% between 
c14 and c17; these differences should be zero if the 
scheme of Voigt were applicable. 

The case of ammonium dihydrogen phosphate  (ADP) 
will be considered more in detail. For  this crystal  it 
is a possible difference between c44 and c~5 tha t  is 
relevant.  New measurements  of some of the elastic 
constants  of A D P  have been made (Joel & Wooster,  
1960) by means of Bergmann-Schaefe r  e l a s tog rams- -  
a method  par t icular ly  suited to give good relative 
values of the elastic c o n s t a n t s - - a n d  a difference of 
6%(+_2%) was found. Tha t  is, the experimental  
results cannot  be f i t ted into the ma t r ix  of Voigt 
(6 independent  components) because of ca4~:c55. 

The experimental  results for A D P  can, however,  be 
interpreted sa t i s fac to r i ly  both with the ma t r ix  of 
Laval -LeCorre  (9 independent  components) and with 
the one suggested now (7 independent  components).  
In  the mat r ix  of Laval -LeCorre  ca7 and c69 are in- 
dependent  constants  while in the mat r ix  shown in 
Appendix  1 (Laue-group 4/mmm) these elastic con- 
s tants  have to satisfy the relations 2c47 = C44-~-C55 and 
c69-=c66, which are the relations (17) for ADP.  How- 
ever, dynamical  experiments  can only give for A D P  
the seven values of: cn, c33, c44, C55, C66, 612-}-669 and 
cla + c47. Therefore, the evidence as to whether  c47 and 
c69 are independent  constants  or not, t ha t  is, the 
adoption for A D P  of either of the two schemes of 
elastic constants  (the Lava l -LeCorre  one or the 
present  one) cannot  be decided by dynamical  ex- 
periments  alone. 

In  more general terms,  the s i tuat ion can be de- 
scribed thus :  the expressions t ha t  give the velocity of 
propagat ion of elastic waves in crystals,  expressions 
on which the dynamic  methods are based, contain the 
elastic constants  in sums such as c~r~+c~,~. When 

- -~  a n d / o r / ~ - - 6 ,  each of these sums reduces to one 
single elastic constant  (there are 27 such cases). Bu t  
when both a 4 y and  /~ ~: 6, the two elastic constants  
c~y~ and c~z,~ cannot  be measured separately.  I t  is 
this dynamic  coupling t ha t  makes  it  impossible to 
decide, by  means of dynamical  experiments,  whether  
the six relations 

c~z~ + c~z~ = c ~ ,  + c z ~  (18) 

are in fact  satisfied, t h a t  is, whether  the  elastic 
matrices of Lava l -LeCorre  or the present  ones give a 
more accurate  description of the elastic properties of 
crystals. As only stat ic measurements  can separate  
the elastic constants  t h a t  appear  coupled in the  
dynamical  equations,  this question will remain  a 
theoretical  one unti l  s tat ic measurements  on suitable 
crystals,  of sufficient accuracy to allow them to be 
related to the dynamic  results,  become available.  
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A P P E N D I X  1 

T h e  n e w  e l a s t i c  m a t r i c e s  f o r  t h e  1 1  L a u e - I ~ r o u p s  

a n d  f o r  i s o t r o p i c  s o l i d s  

F o r  e a c h  of  t h e  c r y s t a l  c lasses  t h e  s y m m e t r y  i m p o s e s  
r e s t r i c t i o n s  o n  t h e  n u m b e r  of  i n d e p e n d e n t  e l a s t i c  
c o n s t a n t s .  T h e  p r o c e d u r e  fo r  d e t e r m i n i n g  t h e s e  c a n  
b e  c o n s u l t e d  i n  b o o k s  s u c h  as  t h o s e  of  W o o s t e r  (1949) 
a n d  N y e  (1957) w h e r e  a l so  t h e  c l a s s i ca l  e l a s t i c  m a t r i c e s  
c a n  b e  c o n s u l t e d .  I n  t a b u l a t i n g  t h e  r e s u l t s  i t  is w o r t h -  
w h i l e  n o t i c i n g  t h a t ,  as  t h e  p r e s e n c e  o r  a b s e n c e  of  a 
c e n t r e  of  s y m m e t r y  d o e s  n o t  a f f e c t  t h e  f o u r t h - o r d e r  
e l a s t i c  t e n s o r  G~r~, t h e  n u m b e r  of  d i f f e r e n t  cases  i n  
t h e  32 c r y s t a l  c lasses  is a c t u a l l y  l l ,  t h e  n u m b e r  of  
L a u e - g r o u p s .  T h e  n e w  m a t r i c e s  a r e  o b t a i n e d  s i m p l y  
b y  a p p l y i n g  t h e  c o n d i t i o n s  (17) t o  t h e  e l a s t i c  m a t r i c e s  
of  L e C o r r e  (1953).  

T h e  n e w  e l a s t i c  m a t r i c e s  ( in t h e  a b r i d g e d  n o t a t i o n )  
fo r  t h e  11 L a u e - g r o u p s ,  a n d  a l so  t h e  o n e  c o r r e s p o n d i n g  
t o  i s o t r o p i c  ( a m o r p h o u s )  so l ids ,  a r e  g i v e n  b e l o w .  I n  
t h e s e  m a t r i c e s ,  w h e n e v e r  s y m m e t r y  r e q u i r e m e n t s  o r  
a n y  of  t h e  c o n d i t i o n s  (17) l e a d  to  t h e  v a n i s h i n g  of  a 
g i v e n  c o n s t a n t  o r  t o  t h e  e q u a l i z a t i o n  of  t w o  c o n s t a n t s ,  
w i t h  t h e  s a m e  or  w i t h  o p p o s i t e  s ign ,  t h i s  wi l l  be  i n t r o -  
d u c e d  in  t h e  m a t r i x .  T h e  v a n i s h i n g  c o m p o n e n t s  a r e  
i n d i c a t e d  b y  a d o t .  T h e  r e l a t i o n s  i n v o l v i n g  s e v e r a l  
c o n s t a n t s  a r e  g i v e n  b e l o w  e a c h  m a t r i x ;  a l so  t h e  
n u m b e r  of  i n d e p e n d e n t  c o m p o n e n t s  is i n d i c a t e d •  

1, T 

11 12 13 14 15 16 17 18 19 
12 22 23 24 25 26 27 28 29 
13 23 33 34 35 36 37 38 39 
14 24 34 44 45 46 47 48 49 
15 25 35 45 55 56 57 58 59 
16 26 36 46 56 66 67 68 69 
17 27 37 47 57 67 77 78 79 
18 28 38 48 58 68 78 88 89 
19 29 39 49 59 69 79 89 99 

47 = ½(44 + 77) 
58 = ½(55 + 88) 
69 = ½(66+ 99) 
4 5 + 7 8 = 4 8 + 5 7  
5 6 + 8 9 = 5 9 + 6 8  
4 6 + 7 9 = 4 9 + 6 7  

(39 independent  components)  

11 12 13 
12 22 23 
13 23 33 

222, ram2, mmm 

44 47 
55 6; 

47 77 
58 

69 
47 = ½(44+ 77) 
58 = ½(55 + 88) 
69 = ½(66 + 99) 

(12 independent  components)  

58 

88 

69 

99 

11 12 13 14 15 16 
12 11 13 --14 --15 16 
13 13 33 36 
14 --14 44 45 --18 
15 -- 15 _ 45 55 17 
16 16 36 --18 17 66 
17 -- 17 47 • -- 15 
18 -- 18 47 14 

--16 --16 - -3 ;  --18 17 66 

47 = ½(44 
66=½(11 

(13 independent  

17 18 - 1 6  
- 1 7  - 1 8  - 16 

- 36 
47 - 1 8  

47 17 
- 1 5  14 66 

55 - 4 5  - 1 5  
- 45 44 14 
- 1 5  14 66  

+55)  
- 12) 

components)  

11 12 
12 11 
13 13 
14 --14 

17 --17 

32, 3m, 3m 

13 14 17 
13 --14 --17 
33 

44 47 
55 17 
17 66 

47 
47 14 
17 66 

47 = ½(44+ 55) 
66=½(11--12) 

55 

(8 independent  components)  

47 
14 

44 
14 

17 
66 

14 
66 

11 
12 
13 

15 

18 

12 
22 
23 

25 

28 

2, m, 2/m 

13 15 
23 . 25 
33 35 

44 4; 47 
35 55 

4; 6; 67 
47 67 77 

38 58 
49 69 79 
47 ---- ½(44+ 77) 
58 = ½(55 + 88) 
69 = ½(66 + 99) 
4 6 + 7 9 = 4 9 + 6 7  

(21 independent  components)  

18 
28 
38 

58 

88 

49 

69 
79 

99 

11 12 13 
12 11 13 
13 13 33 

1; 2; 3; 

- 2 ;  - 1 ;  - 3 ;  

4, 4, 4/m 

16 
26 
36 

4i 4; 
45 55 

4~ 
4÷ 

47 
47 

6~ 
5} -4}  

• - -  45 44 
66 

47 = ½(44 + 55) 

(11 independent  components)  

--26 
--16 
--36 

6; 

6; 



11 12 
12 11 
13 13 

N.  J O E L  A N D  W.  A.  W O O S T E R  

422, 42m, 4mm, 4/mmm 

13 11 12 12 
13 12 11 12 
33 12 12 11 

4i 4÷ 
5; 

66 
4+ 5; 

4~ 
66 

47 = ½(44+ 55) 

(7 independent components) 

4~ 

4i 
66 

66 

432, 43m, m3m 

4i 

4i 

4i 
4i 

4i 
4i 

4i 
4i 

(3 independent components) 

4i 

4i 
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4i 

4i 

11 12 13 
12 11 13 
13 13 33 

16 16 36 

--16 --16 --3"6 

6, -6, 6[m 

4i 4; 
45 55 

66 
4i 

47 
66 

47= ½(44+55) 
66= ½(ll--12) 

16 
16 
36 

4÷ 
4~ 

56 -4;  
--45 44 

(9 independent components) 

11 
12 
13 

12 
11 
13 

622, -6m2, 6ram, 6/mmm 
13 
13 
33 

4i 4÷ 
5~ 

6~ 
4~ 5~ 

4÷ 
6~ 

47---- ½(44+ 55) 
66 = }(ll -- 12) 

(6 independent components) 

4~ 

4i 

11 
12 
12 

12 
11 
12 

23, m3 

12 
12 
,1 

4~ 4~ 
4i 

4i 
4~ 7÷ 

4~ 
4q 

47 = }(44-4- 77) 

(4 independent components) 

4~ 

7~ 

- 1 6  
- 1 6  
- 3 6  

6; 

6; 

6; 

6; 

4~ 

7~ 

11 12 12 
12 11 12 
12 12 11 

Isotropic solids 

4i 4i 
4i 

44 
4i 4i 

4i 
4i 

44=½(11-- 12) 

(2 independent components) 

4i 
4i 

4i 
4i 

A P P E N D I X  2 

T h e  b o d y - c o u p l e s  a s  f u n c t i o n s  of  t h e  d e f o r m a t i o n s  

E q u a t i o n s  (20) a n d  (21), sect ion 4, def ine  t he  m a t r i x  
b#i ( f l=  1, 2, 3; i =  1, 2, . . . ,  6) t h a t  gives the  m o m e n t s  
per  un i t  vo lume  exer ted  by  the  body-couples  in  t e rms  
of the  de fo rma t ions :  

81 e2 E3 ~91 (~2 (~3 

@1 bll 513 b13 b14 b15 516 
G3 b21 b23 b2a b24 535 b26 
Ga b31 b33 baa b34 bs5 b36 

The  componen t s  of t he  mat r ices  b~i can  be w r i t t e n  
in  t e rms  of the  elast ic  cons tan t s  for  each of the  Laue-  
groups  a n d  for i so t ropic  solids;  t h e y  are g iven  below. 
On ly  t he  subscr ip ts  are  wr i t t en ,  so t h a t  2 ( 4 5 - 4 8 )  
means  2(c45--c48), 2(36) means  2c36, etc. 

1, i (18 independent components ) 

14-- 17 24-- 27 34-- 37 44-- 77 2(54-- 57) 2(64-- 67) 
15-- 18 25-- 28 35-- 38 2(45-- 48) 55-- 88 2(65-- 68) 
16--19 26--29 36--39 2(46--49) 2(56--59) 66--99 

2, m, 2/m (8 independent components) 

44 -- 77 2(64-- 67) 
15-18 25-28 35-38 55" 88 

2(46--49) 66*--99 

222, mm2, mmm (3 independen/~ components) 

44-- 77 
55 88 

66--99 
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3,~ 

14-17 
15-18  
2(16) 
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17 -- 14 
18-15  
2(16) 2(36) 

(6 independent components) 

44--55 2(45) 2(15--18) 
2(45) 55--44 2(17-- 14) 

32, 3m, 3m 

14--17 17--14 

(2 independent components 

44 -- 55 
55--44 2(17--14/ 

4, 4, 4/m 

16+'26 16+26 2(36) 

(4 independent components) 

44-- 55 2(45) 
2(45) 55-- 44 

E L A S T I C  C O N S T A N T S  OF C R Y S T A L S  

el£sticas de Lava l  h a y  seis relaciones que deben ser 
sat isfechas por  a lgunas  de las cons tantes  el£sticas. 
Es tas  relaciones resu l tan  de un an£1isis de los torques  
de vo lumen  y de la energia de deformacidn.  Como 
consecuencia,  el ndmero  de cons tantes  el£sticas in- 
dependientes  de un  cristal t r icl lnico se reduce de 45 
a 39, con las reducciones correspondientes  en las demAs 
clases cristalinas.  Las nuevas  matr ices  el'£sticas pa r a  
cada uno de los once grupos de Laue  y pa ra  sdhdos 
isdtropos est£n indicadas en un  apdndice al f inal  de 
este t raba jo .  Tambidn  se da  una  discusi6n de las 
diversas hipdtesis  hechas por  diferentes autores  en 
relacidn con la invar ianc ia  ro tac ional  de la energia  
de deformaci6n.  

422, 42m, 4ram, 4/mmm (1 independent component) 

44 -- 55 
55 44 

6, -6, 6/m 

2(16) 2(16) 2(36) 

(4 independent components) 

44 -- 55 2(45) 
2(45) 55 -- 44 

622, 6m2, 6ram, 6/mmm (1 independent component) 

44-- 55 
55 44 

23, m3 (1 independent component) 

44-- 77 
44-77 

44-77 

432, 43m, m3m, and isotropic solids (all components vanish) 

We  wish to  express our  g ra t i t ude  to Prof.  N. F. 
Mott ,  F.I%.S. and  to Dr  W. H. Tay lo r  for the i r  in te res t  
in this work. One of us (N. J.) gratefully acknowledges 
a research scholarship  f rom the  Br i t i sh  Council  while 
on  leave f rom the  Un ive r s i t y  of Santiago-Chile .  

R e s u m e n  

E n  este t r aba jo  se sugiere que en aquellos casos en 
los cuales es necesario usar  el s is tema de 45 cons tantes  
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